suppressPackageStartupMessages({
library(SummarizedExperiment)
library(SEtools)
library(edgeR)
library(DT)
library(pheatmap)
library(plotly)
library(dplyr)
library(sva)
})source("Functions/EDC_Functions.R")
load("Data/AllSEcorrected.RData",verbose=T)
## Loading objects:
## SEs
## DEAs
<- row.names(DEAs$acute.fet)[which((abs(DEAs$acute.fet$logFC.EXPO0.1X) > 0.2 | abs(DEAs$acute.fet$logFC.EXPO1X) > 0.2 | abs(DEAs$acute.fet$logFC.EXPO10X) > 0.2 | abs(DEAs$acute.fet$logFC.EXPO100X) > 0.2 | abs(DEAs$acute.fet$logFC.EXPO1000X) > 0.2) & DEAs$acute.fet$FDR <= 0.05 & DEAs$acute.fet$logCPM > 0)]
fet.acute
save(fet.acute,file = "Data/DEGsFetalAcute.RData")
<- SEs$acute.fetal[,which(SEs$acute.fetal$EXPO=="CNT"|SEs$acute.fetal$EXPO=="0.1X"| SEs$acute.fetal$EXPO=="1X"| SEs$acute.fetal$EXPO=="10X"| SEs$acute.fetal$EXPO=="100X"| SEs$acute.fetal$EXPO=="1000X")]
MixN_fetal_acute
sehm(MixN_fetal_acute, assayName = "corrected", fet.acute, do.scale = T, show_rownames = T, anno_columns = c("YearOfExperiment","Line","EXPO2"), main="Acute fetal DEGs")
sehm(MixN_fetal_acute, assayName = "corrected",fet.acute, gaps_at = "Line" , do.scale = T, show_rownames = T, anno_columns = c("YearOfExperiment","Line","EXPO2"), main="Acute fetal DEGs")
<- intersect(row.names(DEAs$acute.fet), fet.acute)
Genes
<- as.data.frame(colData(MixN_fetal_acute))
design1 <- getFoldchangeMatrix(assays(MixN_fetal_acute)$corrected[Genes,], design1, is.log = TRUE)
fcmat1
# dose-response clusters of DEGs
<- getConsClust(fcmat1,2)
cc autoLayout(1)
<- c("DMSO","0.1x","1x","10x","100x","1000x")
labs plotGenesClusters(fcmat1, design1, cc, labels=labs, showNumber=T,spar = 0)
<- intersect(row.names(DEAs$acute.fet), fet.acute)
Genes<- SEs$acute.fetal[Genes,which((SEs$acute.fetal$EXPO=="CNT" | SEs$acute.fetal$EXPO=="0.1X" | SEs$acute.fetal$EXPO=="1X" | SEs$acute.fetal$EXPO=="10X" |SEs$acute.fetal$EXPO=="100X" | SEs$acute.fetal$EXPO=="1000X") & SEs$acute.fetal$Line=="E3381-1")]
se
<- as.data.frame(colData(se))
design1 <- getFoldchangeMatrix(assays(se)$corrected, design1, is.log = TRUE)
fcmat1
# single DEGs
# cc<- c(1:length(Genes))
# names(cc) <- Genes
# autoLayout(1)
# labs <- c("CNT","0.1x","1x","10x","100x","1000x")
# plotGenesClusters(fcmat1, design1, cc, labels=labs, showNumber=T,spar = 0)
# dose-response clusters of DEGs
<- getConsClust(fcmat1,2)
cc autoLayout(1)
<- c("DMSO","0.1x","1x","10x","100x","1000x")
labs plotGenesClusters(fcmat1, design1, cc, labels=labs, showNumber=T,spar = 0)
<- SEs$acute.fetal[Genes,which((SEs$acute.fetal$EXPO=="CNT" | SEs$acute.fetal$EXPO=="0.1X" | SEs$acute.fetal$EXPO=="1X" | SEs$acute.fetal$EXPO=="10X" |SEs$acute.fetal$EXPO=="100X" | SEs$acute.fetal$EXPO=="1000X") & SEs$acute.fetal$Line=="E3361-1")]
se
<- as.data.frame(colData(se))
design2 <- getFoldchangeMatrix(assays(se)$corrected, design2, is.log = TRUE)
fcmat2
# single DEGs
# cc<- c(1:length(Genes))
# names(cc) <- Genes
# labs <- c("CNT","0.1x","1x","10x","100x","1000x")
# plotGenesClusters(fcmat2, design2, cc, labels=labs, showNumber=T,spar = 0)
# dose-response clusters of DEGs
<- getConsClust(fcmat2,2)
cc autoLayout(1)
<- c("DMSO","0.1x","1x","10x","100x","1000x")
labs plotGenesClusters(fcmat2, design2, cc, labels=labs, showNumber=T,spar = 0)
load("Data/ASD.RData", verbose = T)
## Loading objects:
## ASD
## SFARI
## SFARIgenes
## NeuropsychiatricDiseases
## PsychencodeNDD
<- intersect(row.names(DEAs$acute.fet), SFARIgenes$score1)
Genes
<- as.data.frame(colData(MixN_fetal_acute))
design1 <- getFoldchangeMatrix(assays(MixN_fetal_acute)$corrected, design1, is.log = TRUE)
fcmat1
# cc<- c(1:length(Genes))
# names(cc) <- Genes
# autoLayout(1)
# labs <- c("CNT","0.1x","1x","10x","100x","1000x")
# plotGenesClusters(fcmat1, design1, cc, labels=labs, showNumber=T,spar = 0)
# SFARI DEGs downregulated
<- intersect(row.names(DEAs$acute.fet), fet.acute)
Genes<- c(1:length(Genes))
ccnames(cc) <- Genes
plotGenesClusters(fcmat1[c("EPHB2","CLSTN2"),], design1, cc[c("EPHB2","CLSTN2")], labels=labs, showNumber=T, showEachGene = T,spar = 0)
<- SEs$acute.fetal[Genes,which((SEs$acute.fetal$EXPO=="CNT" | SEs$acute.fetal$EXPO=="0.1X" | SEs$acute.fetal$EXPO=="1X" | SEs$acute.fetal$EXPO=="10X" |SEs$acute.fetal$EXPO=="100X" | SEs$acute.fetal$EXPO=="1000X") & SEs$acute.fetal$Line=="E3381-1")]
se
<- as.data.frame(colData(se))
design1 <- getFoldchangeMatrix(assays(se)$corrected, design1, is.log = TRUE)
fcmat1
# cc<- c(1:length(Genes))
# names(cc) <- Genes
# autoLayout(1)
# labs <- c("CNT","0.1x","1x","10x","100x","1000x")
# plotGenesClusters(fcmat1, design1, cc, labels=labs, showNumber=T,spar = 0)
# SFARI DEGs downregulated
<- intersect(row.names(DEAs$acute.fet), fet.acute)
Genes<- c(1:length(Genes))
ccnames(cc) <- Genes
plotGenesClusters(fcmat1[c("EPHB2","CLSTN2"),], design1, cc[c("EPHB2","CLSTN2")], labels=labs, showNumber=T, showEachGene = T,spar = 0)
<- SEs$acute.fetal[Genes,which((SEs$acute.fetal$EXPO=="CNT" | SEs$acute.fetal$EXPO=="0.1X" | SEs$acute.fetal$EXPO=="1X" | SEs$acute.fetal$EXPO=="10X" |SEs$acute.fetal$EXPO=="100X" | SEs$acute.fetal$EXPO=="1000X") & SEs$acute.fetal$Line=="E3361-1")]
se
<- as.data.frame(colData(se))
design2 <- getFoldchangeMatrix(assays(se)$corrected, design2, is.log = TRUE)
fcmat2 # cc<- c(1:length(Genes))
# names(cc) <- Genes
# labs <- c("DMSO","0.1x","1x","10x","100x","1000x")
# plotGenesClusters(fcmat2, design2, cc, labels=labs, showNumber=T,spar = 0)
# SFARI DEGs downregulated
<- intersect(row.names(DEAs$acute.fet), fet.acute)
Genes<- c(1:length(Genes))
ccnames(cc) <- Genes
plotGenesClusters(fcmat2[c("EPHB2","CLSTN2"),], design2, cc[c("EPHB2","CLSTN2")], labels=labs, showNumber=T, showEachGene = T,spar = 0)
For details on data filtering, normalization, batch correction and differential expression analysis, see here