<- params$Condition_1
Condition_1 <- params$Condition_2 Condition_2
Top GO Analysis for Ret Agonist
library(RNASeqBulkExploratory)
library(DT)
library(ggplot2)
library(AnnotationDbi)
## Loading required package: stats4
## Loading required package: BiocGenerics
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, aperm, append, as.data.frame, basename, cbind,
## colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
## get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
## match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
## Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
## table, tapply, union, unique, unsplit, which.max, which.min
## Loading required package: Biobase
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: IRanges
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
## expand.grid, I, unname
library(org.Hs.eg.db)
##
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:Biobase':
##
## combine
## The following object is masked from 'package:BiocGenerics':
##
## combine
library(RColorBrewer)
library(viridis)
## Loading required package: viridisLite
library(topGO)
## Loading required package: graph
## Loading required package: GO.db
##
## Loading required package: SparseM
##
## Attaching package: 'SparseM'
## The following object is masked from 'package:base':
##
## backsolve
##
## groupGOTerms: GOBPTerm, GOMFTerm, GOCCTerm environments built.
##
## Attaching package: 'topGO'
## The following object is masked from 'package:IRanges':
##
## members
library(data.table)
##
## Attaching package: 'data.table'
## The following object is masked from 'package:IRanges':
##
## shift
## The following objects are masked from 'package:S4Vectors':
##
## first, second
library(tidyr)
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:S4Vectors':
##
## expand
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
## between, first, last
## The following object is masked from 'package:graph':
##
## union
## The following object is masked from 'package:gridExtra':
##
## combine
## The following object is masked from 'package:AnnotationDbi':
##
## select
## The following objects are masked from 'package:IRanges':
##
## collapse, desc, intersect, setdiff, slice, union
## The following objects are masked from 'package:S4Vectors':
##
## first, intersect, rename, setdiff, setequal, union
## The following object is masked from 'package:Biobase':
##
## combine
## The following objects are masked from 'package:BiocGenerics':
##
## combine, intersect, setdiff, union
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(SummarizedExperiment)
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
##
## count
## The following objects are masked from 'package:Biobase':
##
## anyMissing, rowMedians
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
## colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
## colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
## colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
## colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
## colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
## colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
## colWeightedMeans, colWeightedMedians, colWeightedSds,
## colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
## rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
## rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
## rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
## rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
## rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
## rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
## rowWeightedSds, rowWeightedVars
## The following object is masked from 'package:Biobase':
##
## rowMedians
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
library(sechm)
source("../../plotGenesInTerm_v2.R")
<- params$Dataset
Dataset <- params$logFcTh
logFcTh <- params$FdrTh
FdrTh <- ifelse(is.null(params$OutputFolder), getwd(), params$OutputFolder)
OutputFolder
if (dir.exists(OutputFolder) == FALSE) {
dir.create(OutputFolder, recursive=TRUE)
}
# List with differential expression results
<- readRDS(params$DEAFile)
DEA
#SE object coming from DEA, but not containing specific contrast results
<- readRDS(params$SEFile) SE_DEA
if(! identical(rownames(SE_DEA), row.names(DEA[[Condition_1]][[Condition_2]]$Res))){
stop('Expression data in SE and results from differential espression analysis are inconsistent.')
}## Loading required package: DESeq2
rowData(SE_DEA) <- cbind(rowData(SE_DEA)[,1:6], DEA[[Condition_1]][[Condition_2]]$Res)
# Column names must be set to be compliant with the required format to be recognized by ORA
names(rowData(SE_DEA))[which(names(rowData(SE_DEA))=='log2FoldChange')] <- 'logFC'
names(rowData(SE_DEA))[which(names(rowData(SE_DEA))=='padj')] <- 'FDR'
#metadata(SE_DEA_Prel)$annotation <- 'hsa'
14850 genes in 20 samples have been testes for differential expression.
Imposing a threshold of 1 on the Log2FC and 0.01 on the FDR (as specified in parameters), 3046 genes are selected: 1677 up-regulated genes and 1369 down-regulated genes.
plotVolcanoSE(SE=SE_DEA, FdrTh=FdrTh, logFcTh=logFcTh, FdrCeil=1e-10, logFcCeil=4)
Heatmaps for DEGs, showing scaled vst values.
<- dplyr::filter(data.frame(rowData(SE_DEA)), FDR < FdrTh & abs(logFC) > logFcTh)
DEGs
<- c('darkblue', "purple","white","lightgoldenrod1", 'goldenrod1')
ScaledCols
colData(SE_DEA)$Condition <- factor(colData(SE_DEA)$Condition, levels=c("CTL", "DMSO", "AhHyd_Ag", "AhHyd_Inh", "Andr_Ag", "Andr_Inh", "Estr_Ag", "Estr_Inh", "GC_Ag", "GC_Inh", "LivX_Ag", "LivX_Inh", "Ret_Ag", "Ret_Inh", "Thyr_Ag", "Thyr_Inh" ))
metadata(SE_DEA)$anno_colors <- list(Condition = c('DMSO' = 'grey30', 'CTL' = 'azure3',
'AhHyd_Ag'='#F8766D', 'AhHyd_Inh'='#F8766D50',
'Andr_Ag'='#fccb17', 'Andr_Inh'='#C49A0050',
"Estr_Ag"= '#53B400', "Estr_Inh"= '#53B40050',
'GC_Ag' = '#00C094', 'GC_Inh' = '#00C09450',
'LivX_Ag' = '#00B6EB', 'LivX_Inh' = '#00B6EB50',
'Ret_Ag' = '#A58AFF', 'Ret_Inh' = '#A58AFF50',
'Thyr_Ag' = '#FB61D7', 'Thyr_Inh' = '#FB61D750'
SeqRun = c("20210310" = "orange", "20210724" = "green4", "20220422" =
), "#66ACB7"))
sechm(SE_DEA, features=DEGs$GeneName, assayName="vst", gaps_at="Condition", show_rownames=FALSE,
top_annotation=c('Condition', 'SeqRun'), hmcols=ScaledCols, show_colnames=TRUE,
do.scale=TRUE, breaks=0.85, column_title = "Scaled Vst Values")
## `use_raster` is automatically set to TRUE for a matrix with more than
## 2000 rows. You can control `use_raster` argument by explicitly setting
## TRUE/FALSE to it.
##
## Set `ht_opt$message = FALSE` to turn off this message.
## 'magick' package is suggested to install to give better rasterization.
##
## Set `ht_opt$message = FALSE` to turn off this message.
Gene ontology enrichment analysis is performed on the set of 3046 genes using TopGO with Fisher statistics and weight01 algorithm.
For each specified domain of the ontology:
<- topGOGeneVectors(SE_DEA, FdrTh=FdrTh, logFcTh=logFcTh) GeneVectors
## Gene vector contains levels: 0,1
## Gene vector contains levels: 0,1
## Gene vector contains levels: 0,1
Therefore:
<- ifelse(length(grep('BP', params$TopGO))!=0, TRUE, FALSE)
BpEval <- ifelse(length(grep('MF', params$TopGO))!=0, TRUE, FALSE)
MfEval <- ifelse(length(grep('CC', params$TopGO))!=0, TRUE, FALSE) CcEval
On the basis of the analysis settings, the enrichment for Biological Process IS performed.
<- topGO::annFUN.org(whichOnto="BP", feasibleGenes=names(GeneVectors$DEGenes),
BPann mapping="org.Hs.eg.db", ID="symbol") %>% inverseList()
# Wrapper function for topGO analysis
<- topGOResults(Genes=GeneVectors$DEGenes, gene2GO=BPann, ontology='BP',
ResBPAll desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=paste0(OutputFolder), fileName='BPAll')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 11591 GO terms found. )
##
## Build GO DAG topology ..........
## ( 15045 GO terms and 33988 relations. )
##
## Annotating nodes ...............
## ( 13128 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 4960 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 18: 1 nodes to be scored (0 eliminated genes)
##
## Level 17: 5 nodes to be scored (0 eliminated genes)
##
## Level 16: 14 nodes to be scored (18 eliminated genes)
##
## Level 15: 26 nodes to be scored (85 eliminated genes)
##
## Level 14: 58 nodes to be scored (256 eliminated genes)
##
## Level 13: 102 nodes to be scored (559 eliminated genes)
##
## Level 12: 166 nodes to be scored (1552 eliminated genes)
##
## Level 11: 356 nodes to be scored (3487 eliminated genes)
##
## Level 10: 551 nodes to be scored (5330 eliminated genes)
##
## Level 9: 701 nodes to be scored (7062 eliminated genes)
##
## Level 8: 753 nodes to be scored (8915 eliminated genes)
##
## Level 7: 800 nodes to be scored (10552 eliminated genes)
##
## Level 6: 673 nodes to be scored (11606 eliminated genes)
##
## Level 5: 411 nodes to be scored (12309 eliminated genes)
##
## Level 4: 230 nodes to be scored (12709 eliminated genes)
##
## Level 3: 94 nodes to be scored (12882 eliminated genes)
##
## Level 2: 18 nodes to be scored (12959 eliminated genes)
##
## Level 1: 1 nodes to be scored (13003 eliminated genes)
# Wrapper function for topGO analysis
<- topGOResults(Genes=GeneVectors$DEGenesDown, gene2GO=BPann, ontology='BP',
ResBPDown desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=paste0(OutputFolder), fileName='BPDown')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 11591 GO terms found. )
##
## Build GO DAG topology ..........
## ( 15045 GO terms and 33988 relations. )
##
## Annotating nodes ...............
## ( 13128 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 4694 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 18: 1 nodes to be scored (0 eliminated genes)
##
## Level 17: 5 nodes to be scored (0 eliminated genes)
##
## Level 16: 13 nodes to be scored (18 eliminated genes)
##
## Level 15: 26 nodes to be scored (85 eliminated genes)
##
## Level 14: 54 nodes to be scored (250 eliminated genes)
##
## Level 13: 93 nodes to be scored (559 eliminated genes)
##
## Level 12: 154 nodes to be scored (1498 eliminated genes)
##
## Level 11: 329 nodes to be scored (3395 eliminated genes)
##
## Level 10: 512 nodes to be scored (5247 eliminated genes)
##
## Level 9: 660 nodes to be scored (6944 eliminated genes)
##
## Level 8: 715 nodes to be scored (8783 eliminated genes)
##
## Level 7: 751 nodes to be scored (10478 eliminated genes)
##
## Level 6: 643 nodes to be scored (11573 eliminated genes)
##
## Level 5: 400 nodes to be scored (12283 eliminated genes)
##
## Level 4: 225 nodes to be scored (12706 eliminated genes)
##
## Level 3: 94 nodes to be scored (12878 eliminated genes)
##
## Level 2: 18 nodes to be scored (12959 eliminated genes)
##
## Level 1: 1 nodes to be scored (13003 eliminated genes)
GOTable(ResBPDown$ResSel, maxGO=20)
<- topGOResults(Genes=GeneVectors$DEGenesUp, gene2GO=BPann, ontology='BP',
ResBPUp desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=OutputFolder, fileName='BPUp')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 11591 GO terms found. )
##
## Build GO DAG topology ..........
## ( 15045 GO terms and 33988 relations. )
##
## Annotating nodes ...............
## ( 13128 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 4601 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 18: 1 nodes to be scored (0 eliminated genes)
##
## Level 17: 4 nodes to be scored (0 eliminated genes)
##
## Level 16: 12 nodes to be scored (18 eliminated genes)
##
## Level 15: 25 nodes to be scored (77 eliminated genes)
##
## Level 14: 50 nodes to be scored (231 eliminated genes)
##
## Level 13: 82 nodes to be scored (538 eliminated genes)
##
## Level 12: 139 nodes to be scored (1352 eliminated genes)
##
## Level 11: 307 nodes to be scored (3350 eliminated genes)
##
## Level 10: 496 nodes to be scored (5153 eliminated genes)
##
## Level 9: 651 nodes to be scored (6775 eliminated genes)
##
## Level 8: 708 nodes to be scored (8735 eliminated genes)
##
## Level 7: 755 nodes to be scored (10401 eliminated genes)
##
## Level 6: 639 nodes to be scored (11532 eliminated genes)
##
## Level 5: 401 nodes to be scored (12245 eliminated genes)
##
## Level 4: 222 nodes to be scored (12696 eliminated genes)
##
## Level 3: 90 nodes to be scored (12882 eliminated genes)
##
## Level 2: 18 nodes to be scored (12959 eliminated genes)
##
## Level 1: 1 nodes to be scored (13003 eliminated genes)
GOTable(ResBPUp$ResSel, maxGO=20)
topGOBarplotAll(TopGOResAll=ResBPAll$ResSel, TopGOResDown=ResBPDown$ResSel, TopGOResUp=ResBPUp$ResSel,
terms=8, pvalTh=0.01, plotTitle=NULL)
plotGenesInTerm_v2(ResBPAll$ResSel, ResBPAll$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle=NULL, Interactive=FALSE)
plotGenesInTerm_v2(ResBPDown$ResSel, ResBPDown$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle='Genes in Term - Down DEGs', Interactive=FALSE, fillCol='blue')
plotGenesInTerm_v2(ResBPUp$ResSel, ResBPUp$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle='Genes in Term - Up DEGs', Interactive=FALSE, fillCol='red')
On the basis of the analysis settings, the enrichment for Molecular Function IS performed.
<- topGO::annFUN.org(whichOnto='MF', feasibleGenes=names(GeneVectors$DEGenes),
MFann mapping='org.Hs.eg.db', ID='symbol') %>% inverseList()
# Wrapper function for topGO analysis
<- topGOResults(Genes=GeneVectors$DEGenes, gene2GO=MFann, ontology='MF',
ResMFAll desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=OutputFolder, fileName='MFAll')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 4114 GO terms found. )
##
## Build GO DAG topology ..........
## ( 4579 GO terms and 5967 relations. )
##
## Annotating nodes ...............
## ( 13476 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 837 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 11: 8 nodes to be scored (0 eliminated genes)
##
## Level 10: 14 nodes to be scored (0 eliminated genes)
##
## Level 9: 30 nodes to be scored (177 eliminated genes)
##
## Level 8: 64 nodes to be scored (1272 eliminated genes)
##
## Level 7: 115 nodes to be scored (3297 eliminated genes)
##
## Level 6: 164 nodes to be scored (4009 eliminated genes)
##
## Level 5: 192 nodes to be scored (5606 eliminated genes)
##
## Level 4: 175 nodes to be scored (8618 eliminated genes)
##
## Level 3: 57 nodes to be scored (10847 eliminated genes)
##
## Level 2: 17 nodes to be scored (11639 eliminated genes)
##
## Level 1: 1 nodes to be scored (13358 eliminated genes)
<- topGOResults(Genes=GeneVectors$DEGenesDown, gene2GO=MFann, ontology='MF',
ResMFDown desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=OutputFolder, fileName='MFDown')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 4114 GO terms found. )
##
## Build GO DAG topology ..........
## ( 4579 GO terms and 5967 relations. )
##
## Annotating nodes ...............
## ( 13476 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 753 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 11: 5 nodes to be scored (0 eliminated genes)
##
## Level 10: 9 nodes to be scored (0 eliminated genes)
##
## Level 9: 24 nodes to be scored (125 eliminated genes)
##
## Level 8: 54 nodes to be scored (1187 eliminated genes)
##
## Level 7: 102 nodes to be scored (3224 eliminated genes)
##
## Level 6: 143 nodes to be scored (3965 eliminated genes)
##
## Level 5: 178 nodes to be scored (5508 eliminated genes)
##
## Level 4: 166 nodes to be scored (8431 eliminated genes)
##
## Level 3: 54 nodes to be scored (10792 eliminated genes)
##
## Level 2: 17 nodes to be scored (11631 eliminated genes)
##
## Level 1: 1 nodes to be scored (13358 eliminated genes)
GOTable(ResMFDown$ResSel, maxGO=20)
<- topGOResults(Genes=GeneVectors$DEGenesUp, gene2GO=MFann, ontology='MF',
ResMFUp desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=OutputFolder, fileName='MFUp')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 4114 GO terms found. )
##
## Build GO DAG topology ..........
## ( 4579 GO terms and 5967 relations. )
##
## Annotating nodes ...............
## ( 13476 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 767 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 11: 7 nodes to be scored (0 eliminated genes)
##
## Level 10: 13 nodes to be scored (0 eliminated genes)
##
## Level 9: 30 nodes to be scored (162 eliminated genes)
##
## Level 8: 60 nodes to be scored (1268 eliminated genes)
##
## Level 7: 103 nodes to be scored (3297 eliminated genes)
##
## Level 6: 146 nodes to be scored (3940 eliminated genes)
##
## Level 5: 177 nodes to be scored (5411 eliminated genes)
##
## Level 4: 163 nodes to be scored (8475 eliminated genes)
##
## Level 3: 51 nodes to be scored (10794 eliminated genes)
##
## Level 2: 16 nodes to be scored (11612 eliminated genes)
##
## Level 1: 1 nodes to be scored (13339 eliminated genes)
GOTable(ResMFUp$ResSel, maxGO=20)
topGOBarplotAll(TopGOResAll=ResMFAll$ResSel, TopGOResDown=ResMFDown$ResSel, TopGOResUp=ResMFUp$ResSel,
terms=8, pvalTh=0.01, plotTitle=NULL)
plotGenesInTerm_v2(ResMFAll$ResSel, ResMFAll$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle=NULL, Interactive=FALSE)
plotGenesInTerm_v2(ResMFDown$ResSel, ResMFDown$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle='Genes in Term - Down DEGs', Interactive=FALSE, fillCol='blue')
plotGenesInTerm_v2(ResMFUp$ResSel, ResMFUp$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle='Genes in Term - Up DEGs', Interactive=FALSE, fillCol='red')
On the basis of the analysis settings, the enrichment for Cellular Component IS performed.
<- topGO::annFUN.org(whichOnto='CC', feasibleGenes=names(GeneVectors$DEGenes),
CCann mapping='org.Hs.eg.db', ID='symbol') %>% inverseList()
# Wrapper function for topGO analysis
<- topGOResults(Genes=GeneVectors$DEGenes, gene2GO=CCann, ontology='CC',
ResCCAll desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=OutputFolder, fileName='CCAll')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 1740 GO terms found. )
##
## Build GO DAG topology ..........
## ( 1936 GO terms and 3272 relations. )
##
## Annotating nodes ...............
## ( 13716 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 641 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 13: 1 nodes to be scored (0 eliminated genes)
##
## Level 12: 3 nodes to be scored (0 eliminated genes)
##
## Level 11: 31 nodes to be scored (30 eliminated genes)
##
## Level 10: 71 nodes to be scored (83 eliminated genes)
##
## Level 9: 98 nodes to be scored (941 eliminated genes)
##
## Level 8: 90 nodes to be scored (2891 eliminated genes)
##
## Level 7: 91 nodes to be scored (5213 eliminated genes)
##
## Level 6: 92 nodes to be scored (8518 eliminated genes)
##
## Level 5: 74 nodes to be scored (10137 eliminated genes)
##
## Level 4: 49 nodes to be scored (12067 eliminated genes)
##
## Level 3: 38 nodes to be scored (13176 eliminated genes)
##
## Level 2: 2 nodes to be scored (13557 eliminated genes)
##
## Level 1: 1 nodes to be scored (13659 eliminated genes)
# Wrapper function for topGO analysis
<- topGOResults(Genes=GeneVectors$DEGenesDown, gene2GO=CCann, ontology='CC',
ResCCDown desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=OutputFolder, fileName='CCDown')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 1740 GO terms found. )
##
## Build GO DAG topology ..........
## ( 1936 GO terms and 3272 relations. )
##
## Annotating nodes ...............
## ( 13716 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 601 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 12: 1 nodes to be scored (0 eliminated genes)
##
## Level 11: 29 nodes to be scored (0 eliminated genes)
##
## Level 10: 64 nodes to be scored (24 eliminated genes)
##
## Level 9: 90 nodes to be scored (891 eliminated genes)
##
## Level 8: 86 nodes to be scored (2844 eliminated genes)
##
## Level 7: 86 nodes to be scored (5139 eliminated genes)
##
## Level 6: 83 nodes to be scored (8494 eliminated genes)
##
## Level 5: 73 nodes to be scored (10130 eliminated genes)
##
## Level 4: 48 nodes to be scored (12058 eliminated genes)
##
## Level 3: 38 nodes to be scored (13176 eliminated genes)
##
## Level 2: 2 nodes to be scored (13557 eliminated genes)
##
## Level 1: 1 nodes to be scored (13659 eliminated genes)
GOTable(ResCCDown$ResSel, maxGO=20)
# Wrapper function for topGO analysis
<- topGOResults(Genes=GeneVectors$DEGenesUp, gene2GO=CCann, ontology='CC',
ResCCUp desc=NULL, nodeSize=15, algorithm='weight01', statistic='fisher',
EnTh=params$GoEnTh, PvalTh=params$GoPvalTh, minTerms=12, geneTh=4,
saveRes=TRUE, outDir=OutputFolder, fileName='CCUp')
## Gene vector contains levels: 0,1
##
## Building most specific GOs .....
## ( 1740 GO terms found. )
##
## Build GO DAG topology ..........
## ( 1936 GO terms and 3272 relations. )
##
## Annotating nodes ...............
## ( 13716 genes annotated to the GO terms. )
##
## -- Weight01 Algorithm --
##
## the algorithm is scoring 532 nontrivial nodes
## parameters:
## test statistic: fisher
##
## Level 13: 1 nodes to be scored (0 eliminated genes)
##
## Level 12: 2 nodes to be scored (0 eliminated genes)
##
## Level 11: 18 nodes to be scored (30 eliminated genes)
##
## Level 10: 47 nodes to be scored (59 eliminated genes)
##
## Level 9: 79 nodes to be scored (650 eliminated genes)
##
## Level 8: 80 nodes to be scored (2583 eliminated genes)
##
## Level 7: 81 nodes to be scored (4917 eliminated genes)
##
## Level 6: 81 nodes to be scored (8433 eliminated genes)
##
## Level 5: 61 nodes to be scored (10113 eliminated genes)
##
## Level 4: 42 nodes to be scored (12041 eliminated genes)
##
## Level 3: 37 nodes to be scored (13171 eliminated genes)
##
## Level 2: 2 nodes to be scored (13556 eliminated genes)
##
## Level 1: 1 nodes to be scored (13659 eliminated genes)
GOTable(ResCCUp$ResSel, maxGO=20)
topGOBarplotAll(TopGOResAll=ResCCAll$ResSel, TopGOResDown=ResCCDown$ResSel, TopGOResUp=ResCCUp$ResSel,
terms=8, pvalTh=0.01, plotTitle=NULL)
plotGenesInTerm_v2(ResCCAll$ResSel, ResCCAll$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle=NULL, Interactive=FALSE)
plotGenesInTerm_v2(ResCCDown$ResSel, ResCCDown$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle='Genes in Term - Down DEGs', Interactive=FALSE, fillCol='blue')
plotGenesInTerm_v2(ResCCUp$ResSel, ResCCUp$GOdata, SE_DEA, nterms=8, ngenes=12, plotTitle='Genes in Term - Up DEGs', Interactive=FALSE, fillCol='red')
<- sessionInfo()
SessionInfo <- date()
Date #
save.image(paste0(OutputFolder, Dataset, 'FunctionalAnalysisWorkspace.RData'))
SessionInfo
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] DESeq2_1.38.3 sechm_1.6.0
## [3] SummarizedExperiment_1.28.0 GenomicRanges_1.50.2
## [5] GenomeInfoDb_1.34.9 MatrixGenerics_1.10.0
## [7] matrixStats_0.63.0 dplyr_1.1.0
## [9] tidyr_1.3.0 data.table_1.14.8
## [11] topGO_2.50.0 SparseM_1.81
## [13] GO.db_3.16.0 graph_1.76.0
## [15] viridis_0.6.2 viridisLite_0.4.1
## [17] RColorBrewer_1.1-3 gridExtra_2.3
## [19] org.Hs.eg.db_3.16.0 AnnotationDbi_1.60.0
## [21] IRanges_2.32.0 S4Vectors_0.36.1
## [23] Biobase_2.58.0 BiocGenerics_0.44.0
## [25] ggplot2_3.4.1 DT_0.27
## [27] RNASeqBulkExploratory_0.2.1
##
## loaded via a namespace (and not attached):
## [1] Rtsne_0.16 colorspace_2.1-0 rjson_0.2.21
## [4] ellipsis_0.3.2 circlize_0.4.15 XVector_0.38.0
## [7] GlobalOptions_0.1.2 clue_0.3-64 rstudioapi_0.14
## [10] farver_2.1.1 bit64_4.0.5 fansi_1.0.4
## [13] codetools_0.2-19 doParallel_1.0.17 cachem_1.0.7
## [16] geneplotter_1.76.0 knitr_1.42 jsonlite_1.8.4
## [19] annotate_1.76.0 cluster_2.1.4 png_0.1-8
## [22] compiler_4.2.1 httr_1.4.5 lazyeval_0.2.2
## [25] Matrix_1.5-3 fastmap_1.1.1 cli_3.6.1
## [28] htmltools_0.5.4 tools_4.2.1 gtable_0.3.1
## [31] glue_1.6.2 GenomeInfoDbData_1.2.9 V8_4.2.2
## [34] Rcpp_1.0.10 jquerylib_0.1.4 vctrs_0.6.2
## [37] Biostrings_2.66.0 iterators_1.0.14 crosstalk_1.2.0
## [40] xfun_0.37 stringr_1.5.0 lifecycle_1.0.3
## [43] XML_3.99-0.13 ca_0.71.1 zlibbioc_1.44.0
## [46] scales_1.2.1 TSP_1.2-2 parallel_4.2.1
## [49] ComplexHeatmap_2.14.0 yaml_2.3.7 curl_5.0.0
## [52] memoise_2.0.1 sass_0.4.5 stringi_1.7.12
## [55] RSQLite_2.3.0 highr_0.10 randomcoloR_1.1.0.1
## [58] foreach_1.5.2 seriation_1.4.1 BiocParallel_1.32.5
## [61] shape_1.4.6 rlang_1.1.1 pkgconfig_2.0.3
## [64] bitops_1.0-7 evaluate_0.20 lattice_0.20-45
## [67] purrr_1.0.1 labeling_0.4.2 htmlwidgets_1.6.1
## [70] bit_4.0.5 tidyselect_1.2.0 magrittr_2.0.3
## [73] R6_2.5.1 generics_0.1.3 DelayedArray_0.24.0
## [76] DBI_1.1.3 pillar_1.8.1 withr_2.5.0
## [79] KEGGREST_1.38.0 RCurl_1.98-1.10 tibble_3.2.1
## [82] crayon_1.5.2 utf8_1.2.3 plotly_4.10.1
## [85] rmarkdown_2.20 GetoptLong_1.0.5 locfit_1.5-9.7
## [88] grid_4.2.1 blob_1.2.3 digest_0.6.31
## [91] xtable_1.8-4 munsell_0.5.0 registry_0.5-1
## [94] bslib_0.4.2
Date
## [1] "Fri Jul 18 18:12:21 2025"