Load environment
Code
import warnings
warnings.filterwarnings("ignore" )
import matplotlib.pyplot as plt
import seaborn as sns
import scanpy as sc
import pandas as pd
import numpy as np
import random
import itertools
from tqdm import tqdm
import decoupler as dc
import sys
sys.setrecursionlimit(20000 )
sys.path.append("./../../../../utilities_folder" )
from utilities import load_object, intTable, plotGenesInTerm, getAnnGenes, run_ora_catchErrors
Set R environment with rpy2:
Code
import rpy2.rinterface_lib.callbacks
import anndata2ri
import logging
from rpy2.robjects import pandas2ri
import rpy2.robjects as ro
sc.settings.verbosity = 0
rpy2.rinterface_lib.callbacks.logger.setLevel(logging.ERROR)
pandas2ri.activate()
anndata2ri.activate()
% load_ext rpy2.ipython
Set up of graphical parameters for Python plots:
Code
% matplotlib inline
sc.set_figure_params(dpi = 300 , fontsize = 20 )
plt.rcParams['svg.fonttype' ] = 'none'
cmap_up = sns.light_palette("red" , as_cmap= True )
cmap_down = sns.light_palette("blue" , as_cmap= True )
cmap_all = sns.light_palette("seagreen" , as_cmap= True )
Set up of graphical parameters for R plots:
Code
default_units = 'in'
default_res = 300
default_width = 10
default_height = 9
import rpy2
old_setup_graphics = rpy2.ipython.rmagic.RMagics.setup_graphics
def new_setup_graphics(self , args):
if getattr (args, 'units' ) is not None :
if args.units != default_units:
return old_setup_graphics(self , args)
args.units = default_units
if getattr (args, 'res' ) is None :
args.res = default_res
if getattr (args, 'width' ) is None :
args.width = default_width
if getattr (args, 'height' ) is None :
args.height = default_height
return old_setup_graphics(self , args)
rpy2.ipython.rmagic.RMagics.setup_graphics = new_setup_graphics
Here the cell were we inject the parameters using Quarto renderer:
Code
# Injected Parameters
N = 3
Code
# Injected Parameters
N = 9
Import R libraries:
Code
%% R
source('./../../../../utilities_folder/GO_helper.r' )
loc <- './../../../../R_loc' # pointing to the renv environment
.libPaths(loc)
library('topGO' )
library('org.Hs.eg.db' )
library(dplyr)
library(ggplot2)
Set output folders:
Code
output_folder = './'
folder = './tables/cluster_' + str (N) + '/'
Load data
Here we load the dataframe:
Code
markers = pd.read_excel(folder + 'genes_in_cluster_' + str (N) + '.xlsx' , index_col = 0 )
markers
logFC.celltypes_leveledhEGCLC
logFC.celltypes_leveledhPGCLC
logFC.celltypes_levelediMeLC
logCPM
LR
PValue
FDR
clusters
AHNAK
12.038674
16.815994
12.683582
6.820741
2711.850761
0.000000e+00
0.000000e+00
9
CYP1B1
11.049560
15.539232
13.598500
5.564479
1513.799008
0.000000e+00
0.000000e+00
9
SOX15
11.772982
15.560193
11.991457
5.543767
1455.402578
2.799468e-315
2.847628e-313
9
ITGA9
11.380525
14.989802
11.192375
4.937401
1193.524131
1.863147e-258
1.164758e-256
9
CPT1A
10.664611
14.748879
13.905565
4.884844
1144.688380
7.340728e-248
4.195750e-246
9
...
...
...
...
...
...
...
...
...
ZNF442
10.679139
11.158147
10.895534
1.994474
213.368877
5.445828e-46
2.713419e-45
9
TCTE3
10.629624
10.788777
11.380745
2.005768
213.152961
6.063615e-46
3.017478e-45
9
MAP1A
10.747680
11.084400
10.864300
2.025312
212.943131
6.731066e-46
3.346851e-45
9
ZNF319
10.838910
10.798703
10.952749
1.998963
209.432434
3.862299e-45
1.902305e-44
9
ZNF79
10.835524
10.686426
10.871299
1.959691
206.477157
1.680813e-44
8.164628e-44
9
106 rows × 8 columns
Code
allGenes_series = pd.read_csv('./tables/all_bkg_genes.csv' )
allGenes = allGenes_series['0' ].tolist()
Here we load the dictionary that associates to each GO term its genes:
Code
GO2gene = load_object('./../../../../data/GO2gene_complete.pickle' )
Markers of cluster
We filter genes for the cluster under investigation based on the p-value adjusted that we then convert in -log(p-value adjusted):
Code
markers = markers[markers.FDR < 0.01 ]
markers['-log10(FDR)' ] = - np.log10(markers.FDR)
markers = markers.replace(np.inf, markers[markers['-log10(FDR)' ] != np.inf]['-log10(FDR)' ].max ())
markers
logFC.celltypes_leveledhEGCLC
logFC.celltypes_leveledhPGCLC
logFC.celltypes_levelediMeLC
logCPM
LR
PValue
FDR
clusters
-log10(FDR)
AHNAK
12.038674
16.815994
12.683582
6.820741
2711.850761
0.000000e+00
0.000000e+00
9
312.545517
CYP1B1
11.049560
15.539232
13.598500
5.564479
1513.799008
0.000000e+00
0.000000e+00
9
312.545517
SOX15
11.772982
15.560193
11.991457
5.543767
1455.402578
2.799468e-315
2.847628e-313
9
312.545517
ITGA9
11.380525
14.989802
11.192375
4.937401
1193.524131
1.863147e-258
1.164758e-256
9
255.933764
CPT1A
10.664611
14.748879
13.905565
4.884844
1144.688380
7.340728e-248
4.195750e-246
9
245.377190
...
...
...
...
...
...
...
...
...
...
ZNF442
10.679139
11.158147
10.895534
1.994474
213.368877
5.445828e-46
2.713419e-45
9
44.566483
TCTE3
10.629624
10.788777
11.380745
2.005768
213.152961
6.063615e-46
3.017478e-45
9
44.520356
MAP1A
10.747680
11.084400
10.864300
2.025312
212.943131
6.731066e-46
3.346851e-45
9
44.475364
ZNF319
10.838910
10.798703
10.952749
1.998963
209.432434
3.862299e-45
1.902305e-44
9
43.720720
ZNF79
10.835524
10.686426
10.871299
1.959691
206.477157
1.680813e-44
8.164628e-44
9
43.088064
106 rows × 9 columns
All regulated
Code
all_sign = markers.index.tolist()
allSelected = allGenes_series['0' ].isin(all_sign).astype('int' ).tolist()
topGO
All significant
Code
%% R - i allSelected - i allGenes
allGenes_v <- c(allSelected)
#print(allGenes_v)
names(allGenes_v) <- allGenes
allGenes_v <- unlist(allGenes_v)
geneNames <- c(allGenes)
ann_org_BP <- topGO::annFUN.org(whichOnto= 'BP' , feasibleGenes= names(allGenes_v),
mapping= 'org.Hs.eg' , ID= 'symbol' )
ann_org_MF <- topGO::annFUN.org(whichOnto= 'MF' , feasibleGenes= names(allGenes_v),
mapping= 'org.Hs.eg' , ID= 'symbol' )
ann_org_CC <- topGO::annFUN.org(whichOnto= 'CC' , feasibleGenes= names(allGenes_v),
mapping= 'org.Hs.eg' , ID= 'symbol' )
selection <- function(allScores){return (as .logical(allScores))}
Code
%% R
#print(lapply(ann_org_BP, count_genes))
GOdata <- new("topGOdata" ,
ontology= "BP" ,
allGenes= allGenes_v,
annot= annFUN.GO2genes,
GO2genes= ann_org_BP,
geneSel = selection,
nodeSize= 10 )
Code
%% R - o results
results <- runTest(GOdata, algorithm= "weight01" ,statistic= "fisher" )
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata
genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([10903, 87, 10, 2071], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight= results,
orderBy= "weight" , topNodes= len (scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores' : scores_py, 'GO.ID' : score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID' , right_on = 'GO.ID' )
results_table_py
GO.ID
Term
Annotated
Significant
Expected
weight
Scores
0
GO:0006357
regulation of transcription by RNA polym...
1820
28
14.52
0.00035
0.000347
1
GO:0007614
short-term memory
11
2
0.09
0.00330
0.003304
2
GO:1901862
negative regulation of muscle tissue dev...
11
2
0.09
0.00330
0.003304
3
GO:1903799
negative regulation of miRNA maturation
13
2
0.10
0.00464
0.004637
4
GO:0016202
regulation of striated muscle tissue dev...
14
2
0.11
0.00538
0.005382
...
...
...
...
...
...
...
...
5697
GO:2001241
positive regulation of extrinsic apoptot...
10
0
0.08
1.00000
1.000000
5698
GO:2001244
positive regulation of intrinsic apoptot...
42
0
0.34
1.00000
1.000000
5699
GO:2001251
negative regulation of chromosome organi...
88
0
0.70
1.00000
1.000000
5700
GO:2001256
regulation of store-operated calcium ent...
11
0
0.09
1.00000
1.000000
5701
GO:2001267
regulation of cysteine-type endopeptidas...
13
0
0.10
1.00000
1.000000
5702 rows × 7 columns
Code
results_table_py = results_table_py[results_table_py['Scores' ] < 0.05 ]
results_table_py = results_table_py[results_table_py['Annotated' ] < 200 ]
results_table_py = results_table_py[results_table_py['Annotated' ] > 15 ]
Code
results_table_py['-log10(pvalue)' ] = - np.log10(results_table_py.Scores)
results_table_py['Significant/Annotated' ] = results_table_py['Significant' ] / results_table_py['Annotated' ]
Code
intTable(results_table_py, folder = folder, fileName = 'GO_BP_all.xlsx' , save = True )
Code
%% R - i folder
Res <- GenTable(GOdata, weight= results,
orderBy= "weight" , topNodes= length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID" , "Term" , "Annotated" , "Significant" , "Expected" , "Statistics" )
Res$ER <- Res$Significant / Res$Expected
image = bubbleplot(Res, Ont = 'BP' , fillCol = 'forestgreen' )
ggsave(file = paste0(folder, "TopGO_results_BP.pdf" ), plot= image, width= 12 , height= 4 )
bubbleplot(Res, Ont = 'BP' , fillCol = 'forestgreen' )
Code
%% R - i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 15 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
ggsave(file = paste0(folder, "Genes_in_Term_results_BP.pdf" ), plot= image, width= 12 , height= 4 )
plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 15 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
Code
%% R - i markers - i folder
saveGenesInTerm(Res, GOdata, nterms = 20 , path = paste0(folder,'GO_BP_genesInTerm_all.xlsx' ), SE = markers)
Code
%% R
GOdata <- new("topGOdata" ,
ontology= "MF" ,
allGenes= allGenes_v,
annot= annFUN.GO2genes,
GO2genes= ann_org_MF,
geneSel = selection,
nodeSize= 10 )
Code
%% R - o results
results <- runTest(GOdata, algorithm= "weight01" ,statistic= "fisher" )
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata
genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([11203, 94, 10, 292], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight= results,
orderBy= "weight" , topNodes= len (scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores' : scores_py, 'GO.ID' : score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID' , right_on = 'GO.ID' )
results_table_py = results_table_py[results_table_py['Scores' ] < 0.05 ]
results_table_py = results_table_py[results_table_py['Annotated' ] < 200 ]
results_table_py = results_table_py[results_table_py['Annotated' ] > 15 ]
intTable(results_table_py, folder = folder, fileName = 'GO_MF_all.xlsx' , save = True )
Code
%% R
Res <- GenTable(GOdata, weight= results,
orderBy= "weight" , topNodes= length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID" , "Term" , "Annotated" , "Significant" , "Expected" , "Statistics" )
Res$ER <- Res$Significant / Res$Expected
image = bubbleplot(Res, Ont = 'MF' , fillCol = 'forestgreen' )
ggsave(file = paste0(folder, "TopGO_results_MF.pdf" ), plot= image, width= 12 , height= 4 )
bubbleplot(Res, Ont = 'MF' , fillCol = 'forestgreen' )
Code
%% R - i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 15 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
ggsave(file = paste0(folder, "Genes_in_Term_results_MF.pdf" ), plot= image, width= 12 , height= 4 )
plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 15 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
Code
%% R - i markers - i folder
saveGenesInTerm(Res, GOdata, nterms = 20 , path = paste0(folder,'GO_MF_genesInTerm_all.xlsx' ), SE = markers)
Code
%% R
GOdata <- new("topGOdata" ,
ontology= "CC" ,
allGenes= allGenes_v,
annot= annFUN.GO2genes,
GO2genes= ann_org_CC,
geneSel = selection,
nodeSize= 10 )
Code
%% R - o results
results <- runTest(GOdata, algorithm= "weight01" ,statistic= "fisher" )
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata
genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([11323, 96, 10, 298], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight= results,
orderBy= "weight" , topNodes= len (scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores' : scores_py, 'GO.ID' : score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID' , right_on = 'GO.ID' )
Code
results_table_py = results_table_py[results_table_py['Scores' ] < 0.05 ]
results_table_py = results_table_py[results_table_py['Annotated' ] < 200 ]
results_table_py = results_table_py[results_table_py['Annotated' ] > 15 ]
intTable(results_table_py, folder = folder, fileName = 'GO_CC_all.xlsx' , save = True )
Code
%% R
Res <- GenTable(GOdata, weight= results,
orderBy= "weight" , topNodes= length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID" , "Term" , "Annotated" , "Significant" , "Expected" , "Statistics" )
Res$ER <- Res$Significant / Res$Expected
image = bubbleplot(Res, Ont = 'CC' , fillCol = 'forestgreen' )
ggsave(file = paste0(folder, "TopGO_results_CC.pdf" ), plot= image, width= 12 , height= 4 )
bubbleplot(Res, Ont = 'CC' , fillCol = 'forestgreen' )
Code
%% R - i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 12 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
ggsave(file = paste0(folder, "Genes:_in_Term_results_CC.pdf" ), plot= image, width= 12 , height= 4 )
plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 12 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
Code
%% R - i markers - i folder
saveGenesInTerm(Res, GOdata, nterms = 20 , path = paste0(folder,'GO_CC_genesInTerm_all.xlsx' ), SE = markers)
Reactome
Code
curated = msigdb[msigdb['collection' ].isin(['reactome_pathways' ])]
curated = curated[~ curated.duplicated(['geneset' , 'genesymbol' ])]
aggregated = curated[["geneset" , "genesymbol" ]].groupby("geneset" ).count().rename(columns= {"genesymbol" : "gene_count" })
curated = curated[~ curated.geneset.isin(aggregated[aggregated.gene_count > 200 ].index.tolist())].copy()
curated = curated[~ curated.geneset.isin(aggregated[aggregated.gene_count < 15 ].index.tolist())].copy()
Code
rank = pd.DataFrame(markers['-log10(FDR)' ])
rank_copy = rank.copy()
rank_copy['pval' ] = markers.loc[rank.index].FDR
Code
-log10(FDR)
pval
AHNAK
312.545517
0.000000e+00
CYP1B1
312.545517
0.000000e+00
SOX15
312.545517
2.847628e-313
ITGA9
255.933764
1.164758e-256
CPT1A
245.377190
4.195750e-246
...
...
...
ZNF442
44.566483
2.713419e-45
TCTE3
44.520356
3.017478e-45
MAP1A
44.475364
3.346851e-45
ZNF319
43.720720
1.902305e-44
ZNF79
43.088064
8.164628e-44
106 rows × 2 columns
Code
results_table_py = run_ora_catchErrors(mat= rank.T, net= curated, source= 'geneset' , target= 'genesymbol' , verbose= False , n_up= len (rank), n_bottom= 0 )
len (results_table_py)
No significant term was found
Code
intTable(results_table_py, folder = folder, fileName = 'Reactome_all.xlsx' , save = True )
Code
if len (results_table_py) > 0 :
results_table_py = getAnnGenes(results_table_py, GO2gene['reactome_pathways' ], rank_copy)
_, df = plotGenesInTerm(results = results_table_py, GO2gene = GO2gene['reactome_pathways' ], DEGs = rank_copy, n_top_terms = 10 , cmap = cmap_all)
Code
if len (results_table_py) > 0 :
intTable(df, folder = folder, fileName = 'genesInTerm_Reactome_all.xlsx' , save = True )
KEGG
Code
curated = msigdb[msigdb['collection' ].isin(['kegg_pathways' ])]
curated = curated[~ curated.duplicated(['geneset' , 'genesymbol' ])]
aggregated = curated[["geneset" , "genesymbol" ]].groupby("geneset" ).count().rename(columns= {"genesymbol" : "gene_count" })
curated = curated[~ curated.geneset.isin(aggregated[aggregated.gene_count > 200 ].index.tolist())].copy()
curated = curated[~ curated.geneset.isin(aggregated[aggregated.gene_count < 15 ].index.tolist())].copy()
Code
results_table_py = run_ora_catchErrors(mat= rank.T, net= curated, source= 'geneset' , target= 'genesymbol' , verbose= False , n_up= len (rank), n_bottom= 0 )
No significant term was found
Code
intTable(results_table_py, folder = folder, fileName = 'KEGG_all.xlsx' , save = True )
Code
if len (results_table_py) > 0 :
results_table_py = getAnnGenes(results_table_py, GO2gene['kegg_pathways' ], rank_copy)
_, df = plotGenesInTerm(results_table_py, GO2gene['kegg_pathways' ], rank_copy, n_top_terms = 10 , n_top_genes = 15 , cmap = cmap_all)
Code
if len (results_table_py) > 0 :
intTable(df, folder = folder, fileName = 'genesInTerm_KEGG_all.xlsx' , save = True )