1 Load environment

Code
import warnings

warnings.filterwarnings("ignore")

import matplotlib.pyplot as plt
import seaborn as sns
import scanpy as sc
import pandas as pd
import numpy as np
import random
import itertools

from tqdm import tqdm

import decoupler as dc
import sys

sys.setrecursionlimit(20000)

sys.path.append("./../../../../utilities_folder")
from utilities import load_object, intTable, plotGenesInTerm, getAnnGenes, run_ora_catchErrors

Set R environment with rpy2:

Code
import rpy2.rinterface_lib.callbacks
import anndata2ri
import logging

from rpy2.robjects import pandas2ri
import rpy2.robjects as ro

sc.settings.verbosity = 0
rpy2.rinterface_lib.callbacks.logger.setLevel(logging.ERROR)

pandas2ri.activate()
anndata2ri.activate()

%load_ext rpy2.ipython

Set up of graphical parameters for Python plots:

Code
%matplotlib inline
sc.set_figure_params(dpi = 300, fontsize = 20)

plt.rcParams['svg.fonttype'] = 'none'

cmap_up = sns.light_palette("red", as_cmap=True)
cmap_down = sns.light_palette("blue", as_cmap=True)
cmap_all = sns.light_palette("seagreen", as_cmap=True)

Set up of graphical parameters for R plots:

Code
default_units = 'in' 
default_res = 300
default_width = 10
default_height = 9

import rpy2
old_setup_graphics = rpy2.ipython.rmagic.RMagics.setup_graphics

def new_setup_graphics(self, args):
    if getattr(args, 'units') is not None:
        if args.units != default_units:
            return old_setup_graphics(self, args)
    args.units = default_units
    if getattr(args, 'res') is None:
        args.res = default_res
    if getattr(args, 'width') is None:
        args.width = default_width
    if getattr(args, 'height') is None:
        args.height = default_height        
    return old_setup_graphics(self, args)


rpy2.ipython.rmagic.RMagics.setup_graphics = new_setup_graphics

Here the cell were we inject the parameters using Quarto renderer:

Code
# Injected Parameters
N = 3
Code
# Injected Parameters
N = 7

Import R libraries:

Code
%%R
source('./../../../../utilities_folder/GO_helper.r')
loc <- './../../../../R_loc' # pointing to the renv environment

.libPaths(loc)

library('topGO')
library('org.Hs.eg.db')
library(dplyr)
library(ggplot2)

Set output folders:

Code
output_folder = './'
folder = './tables/cluster_' + str(N) + '/'

2 Load data

Here we load the dataframe:

Code
markers = pd.read_excel(folder + 'genes_in_cluster_' + str(N) + '.xlsx', index_col = 0)
markers
logFC.celltypes_leveledhEGCLC logFC.celltypes_leveledhPGCLC logFC.celltypes_levelediMeLC logCPM LR PValue FDR clusters
TCL1A 11.389884 17.660164 0 7.639515 3914.736661 0.000000e+00 0.000000e+00 7
ARID5B 11.235232 15.714693 0 5.605302 2032.295508 0.000000e+00 0.000000e+00 7
BARX1 11.049682 16.213512 0 6.131787 2558.952569 0.000000e+00 0.000000e+00 7
LAMA4 10.852847 17.611657 0 7.580034 4066.761890 0.000000e+00 0.000000e+00 7
MSC 10.866905 14.894956 0 4.732514 1452.945397 9.556065e-315 9.638777e-313 7
... ... ... ... ... ... ... ... ...
SIRT4 10.583195 10.861387 0 1.429105 285.778724 1.189612e-61 7.660363e-61 7
KSR2 10.640697 10.669002 0 1.473940 284.419490 2.341700e-61 1.497465e-60 7
NFIC 10.429091 10.910541 0 1.395141 282.712857 5.480549e-61 3.482426e-60 7
ZNF658 10.604303 10.636442 0 1.427180 280.633694 1.544248e-60 9.735088e-60 7
HCN4 10.637863 10.413336 0 1.376229 275.691602 1.811540e-59 1.124297e-58 7

87 rows × 8 columns

Code
allGenes_series = pd.read_csv('./tables/all_bkg_genes.csv')
allGenes = allGenes_series['0'].tolist()

Here we load the dictionary that associates to each GO term its genes:

Code
GO2gene = load_object('./../../../../data/GO2gene_complete.pickle')

3 Markers of cluster

We filter genes for the cluster under investigation based on the p-value adjusted that we then convert in -log(p-value adjusted):

Code

markers = markers[markers.FDR < 0.01]
markers['-log10(FDR)'] = -np.log10(markers.FDR)
markers = markers.replace(np.inf, markers[markers['-log10(FDR)'] != np.inf]['-log10(FDR)'].max())
markers
logFC.celltypes_leveledhEGCLC logFC.celltypes_leveledhPGCLC logFC.celltypes_levelediMeLC logCPM LR PValue FDR clusters -log10(FDR)
TCL1A 11.389884 17.660164 0 7.639515 3914.736661 0.000000e+00 0.000000e+00 7 312.015978
ARID5B 11.235232 15.714693 0 5.605302 2032.295508 0.000000e+00 0.000000e+00 7 312.015978
BARX1 11.049682 16.213512 0 6.131787 2558.952569 0.000000e+00 0.000000e+00 7 312.015978
LAMA4 10.852847 17.611657 0 7.580034 4066.761890 0.000000e+00 0.000000e+00 7 312.015978
MSC 10.866905 14.894956 0 4.732514 1452.945397 9.556065e-315 9.638777e-313 7 312.015978
... ... ... ... ... ... ... ... ... ...
SIRT4 10.583195 10.861387 0 1.429105 285.778724 1.189612e-61 7.660363e-61 7 60.115751
KSR2 10.640697 10.669002 0 1.473940 284.419490 2.341700e-61 1.497465e-60 7 59.824643
NFIC 10.429091 10.910541 0 1.395141 282.712857 5.480549e-61 3.482426e-60 7 59.458118
ZNF658 10.604303 10.636442 0 1.427180 280.633694 1.544248e-60 9.735088e-60 7 59.011660
HCN4 10.637863 10.413336 0 1.376229 275.691602 1.811540e-59 1.124297e-58 7 57.949119

87 rows × 9 columns

3.0.1 All regulated

Code
all_sign = markers.index.tolist()
allSelected = allGenes_series['0'].isin(all_sign).astype('int').tolist()

4 topGO

4.1 All significant

Code
%%R -i allSelected -i allGenes

allGenes_v <- c(allSelected)
#print(allGenes_v)
names(allGenes_v) <- allGenes
allGenes_v <- unlist(allGenes_v)

geneNames <- c(allGenes)

ann_org_BP <- topGO::annFUN.org(whichOnto='BP', feasibleGenes=names(allGenes_v), 
                           mapping='org.Hs.eg', ID='symbol')

ann_org_MF <- topGO::annFUN.org(whichOnto='MF', feasibleGenes=names(allGenes_v), 
                           mapping='org.Hs.eg', ID='symbol')

ann_org_CC <- topGO::annFUN.org(whichOnto='CC', feasibleGenes=names(allGenes_v), 
                           mapping='org.Hs.eg', ID='symbol')

selection <- function(allScores){return (as.logical(allScores))}
Code
%%R
#print(lapply(ann_org_BP, count_genes))

GOdata <- new("topGOdata",
  ontology="BP",
  allGenes=allGenes_v,
  annot=annFUN.GO2genes,
  GO2genes=ann_org_BP,
  geneSel = selection,
  nodeSize=10)
Code
%%R -o results

results <- runTest(GOdata, algorithm="weight01",statistic="fisher")
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata

genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([10903,    80,    10,  1816], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight=results,
        orderBy="weight", topNodes=len(scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores': scores_py, 'GO.ID': score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID', right_on = 'GO.ID')
results_table_py
GO.ID Term Annotated Significant Expected weight Scores
0 GO:0060977 coronary vasculature morphogenesis 13 2 0.10 0.0039 0.003935
1 GO:0050901 leukocyte tethering or rolling 16 2 0.12 0.0060 0.005969
2 GO:1900745 positive regulation of p38MAPK cascade 20 2 0.15 0.0093 0.009273
3 GO:0003161 cardiac conduction system development 22 2 0.16 0.0112 0.011167
4 GO:0022011 myelination in peripheral nervous system 23 2 0.17 0.0122 0.012173
... ... ... ... ... ... ... ...
5697 GO:2001252 positive regulation of chromosome organi... 93 0 0.68 1.0000 1.000000
5698 GO:2001256 regulation of store-operated calcium ent... 11 0 0.08 1.0000 1.000000
5699 GO:2001258 negative regulation of cation channel ac... 23 0 0.17 1.0000 1.000000
5700 GO:2001259 positive regulation of cation channel ac... 43 0 0.32 1.0000 1.000000
5701 GO:2001267 regulation of cysteine-type endopeptidas... 13 0 0.10 1.0000 1.000000

5702 rows × 7 columns

Code
results_table_py = results_table_py[results_table_py['Scores'] < 0.05]
results_table_py = results_table_py[results_table_py['Annotated'] < 200]
results_table_py = results_table_py[results_table_py['Annotated'] > 15]
Code
results_table_py['-log10(pvalue)'] = - np.log10(results_table_py.Scores)
results_table_py['Significant/Annotated'] = results_table_py['Significant'] / results_table_py['Annotated']
Code
intTable(results_table_py, folder = folder, fileName = 'GO_BP_all.xlsx', save = True)
Code
%%R -i folder
Res <- GenTable(GOdata, weight=results,
        orderBy="weight", topNodes=length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID", "Term", "Annotated", "Significant", "Expected", "Statistics")
Res$ER <- Res$Significant / Res$Expected

image = bubbleplot(Res, Ont = 'BP', fillCol = 'forestgreen')
ggsave(file=paste0(folder, "TopGO_results_BP.pdf"), plot=image, width=12, height=4)

bubbleplot(Res, Ont = 'BP', fillCol = 'forestgreen')

Code
%%R -i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms=15, ngenes=12,
                             fillCol='forestgreen', log = TRUE)

ggsave(file=paste0(folder, "Genes_in_Term_results_BP.pdf"), plot=image, width=12, height=4)

plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms=15, ngenes=12,
                             fillCol='forestgreen', log = TRUE)

Code
%%R -i markers -i folder
saveGenesInTerm(Res, GOdata, nterms = 20, path = paste0(folder,'GO_BP_genesInTerm_all.xlsx'), SE = markers)
Code
%%R

GOdata <- new("topGOdata",
  ontology="MF",
  allGenes=allGenes_v,
  annot=annFUN.GO2genes,
  GO2genes=ann_org_MF,
  geneSel = selection,
  nodeSize=10)
Code
%%R -o results

results <- runTest(GOdata, algorithm="weight01",statistic="fisher")
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata

genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([11203,    83,    10,   292], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight=results,
        orderBy="weight", topNodes=len(scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores': scores_py, 'GO.ID': score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID', right_on = 'GO.ID')
results_table_py = results_table_py[results_table_py['Scores'] < 0.05]
results_table_py = results_table_py[results_table_py['Annotated'] < 200]
results_table_py = results_table_py[results_table_py['Annotated'] > 15]

intTable(results_table_py, folder = folder, fileName = 'GO_MF_all.xlsx', save = True)
Code
%%R
Res <- GenTable(GOdata, weight=results,
        orderBy="weight", topNodes=length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID", "Term", "Annotated", "Significant", "Expected", "Statistics")
Res$ER <- Res$Significant / Res$Expected

image = bubbleplot(Res, Ont = 'MF', fillCol = 'forestgreen')

ggsave(file=paste0(folder, "TopGO_results_MF.pdf"), plot=image, width=12, height=4)

bubbleplot(Res, Ont = 'MF', fillCol = 'forestgreen')

Code
%%R -i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms=15, ngenes=12,
                             fillCol='forestgreen', log = TRUE)

ggsave(file=paste0(folder, "Genes_in_Term_results_MF.pdf"), plot=image, width=12, height=4)

plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms=15, ngenes=12,
                             fillCol='forestgreen', log = TRUE)

Code
%%R -i markers -i folder
saveGenesInTerm(Res, GOdata, nterms = 20, path = paste0(folder,'GO_MF_genesInTerm_all.xlsx'), SE = markers)
Code
%%R

GOdata <- new("topGOdata",
  ontology="CC",
  allGenes=allGenes_v,
  annot=annFUN.GO2genes,
  GO2genes=ann_org_CC,
  geneSel = selection,
  nodeSize=10)
Code
%%R -o results

results <- runTest(GOdata, algorithm="weight01",statistic="fisher")
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata

genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([11323,    81,    10,   237], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight=results,
        orderBy="weight", topNodes=len(scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores': scores_py, 'GO.ID': score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID', right_on = 'GO.ID')
Code
results_table_py = results_table_py[results_table_py['Scores'] < 0.05]
results_table_py = results_table_py[results_table_py['Annotated'] < 200]
results_table_py = results_table_py[results_table_py['Annotated'] > 15]

intTable(results_table_py, folder = folder, fileName = 'GO_CC_all.xlsx', save = True)
Code
%%R
Res <- GenTable(GOdata, weight=results,
        orderBy="weight", topNodes=length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID", "Term", "Annotated", "Significant", "Expected", "Statistics")
Res$ER <- Res$Significant / Res$Expected
image = bubbleplot(Res, Ont = 'CC', fillCol = 'forestgreen')

ggsave(file=paste0(folder, "TopGO_results_CC.pdf"), plot=image, width=12, height=4)

bubbleplot(Res, Ont = 'CC', fillCol = 'forestgreen')

Code
%%R -i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms=12, ngenes=12,
                             fillCol='forestgreen', log = TRUE)

ggsave(file=paste0(folder, "Genes:_in_Term_results_CC.pdf"), plot=image, width=12, height=4)

plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms=12, ngenes=12,
                             fillCol='forestgreen', log = TRUE)

Code
%%R -i markers -i folder
saveGenesInTerm(Res, GOdata, nterms = 20, path = paste0(folder,'GO_CC_genesInTerm_all.xlsx'), SE = markers)

4.1.0.1 Reactome

Code
curated = msigdb[msigdb['collection'].isin(['reactome_pathways'])]
curated = curated[~curated.duplicated(['geneset', 'genesymbol'])]

aggregated = curated[["geneset", "genesymbol"]].groupby("geneset").count().rename(columns={"genesymbol": "gene_count"})
curated = curated[~curated.geneset.isin(aggregated[aggregated.gene_count > 200].index.tolist())].copy()
curated = curated[~curated.geneset.isin(aggregated[aggregated.gene_count < 15].index.tolist())].copy()
Code
rank = pd.DataFrame(markers['-log10(FDR)'])

rank_copy = rank.copy()
rank_copy['pval'] = markers.loc[rank.index].FDR
Code
rank_copy
-log10(FDR) pval
TCL1A 312.015978 0.000000e+00
ARID5B 312.015978 0.000000e+00
BARX1 312.015978 0.000000e+00
LAMA4 312.015978 0.000000e+00
MSC 312.015978 9.638777e-313
... ... ...
SIRT4 60.115751 7.660363e-61
KSR2 59.824643 1.497465e-60
NFIC 59.458118 3.482426e-60
ZNF658 59.011660 9.735088e-60
HCN4 57.949119 1.124297e-58

87 rows × 2 columns

Code
results_table_py = run_ora_catchErrors(mat=rank.T, net=curated, source='geneset', target='genesymbol', verbose=False, n_up=len(rank), n_bottom=0)
len(results_table_py)
No significant term was found
0
Code
intTable(results_table_py, folder = folder, fileName = 'Reactome_all.xlsx', save = True)
Code
if len(results_table_py) > 0:
    results_table_py = getAnnGenes(results_table_py, GO2gene['reactome_pathways'], rank_copy)
    _, df = plotGenesInTerm(results = results_table_py, GO2gene = GO2gene['reactome_pathways'], DEGs = rank_copy, n_top_terms = 10, cmap = cmap_all)
Code
if len(results_table_py) > 0:
    intTable(df, folder = folder, fileName = 'genesInTerm_Reactome_all.xlsx', save = True)

4.1.0.2 KEGG

Code
curated = msigdb[msigdb['collection'].isin(['kegg_pathways'])]
curated = curated[~curated.duplicated(['geneset', 'genesymbol'])]

aggregated = curated[["geneset", "genesymbol"]].groupby("geneset").count().rename(columns={"genesymbol": "gene_count"})
curated = curated[~curated.geneset.isin(aggregated[aggregated.gene_count > 200].index.tolist())].copy()
curated = curated[~curated.geneset.isin(aggregated[aggregated.gene_count < 15].index.tolist())].copy()
Code
results_table_py = run_ora_catchErrors(mat=rank.T, net=curated, source='geneset', target='genesymbol', verbose=False, n_up=len(rank), n_bottom=0)
No significant term was found
Code
intTable(results_table_py, folder = folder, fileName = 'KEGG_all.xlsx', save = True)
Code
if len(results_table_py) > 0:
    results_table_py = getAnnGenes(results_table_py, GO2gene['kegg_pathways'], rank_copy)
    _, df = plotGenesInTerm(results_table_py, GO2gene['kegg_pathways'], rank_copy, n_top_terms = 10, n_top_genes = 15, cmap = cmap_all)
Code
if len(results_table_py) > 0:
    intTable(df, folder = folder, fileName = 'genesInTerm_KEGG_all.xlsx', save = True)