Load environment
Code
import warnings
warnings.filterwarnings("ignore" )
import matplotlib.pyplot as plt
import seaborn as sns
import scanpy as sc
import pandas as pd
import numpy as np
import random
import itertools
from tqdm import tqdm
import decoupler as dc
import sys
sys.setrecursionlimit(20000 )
sys.path.append("./../../../../utilities_folder" )
from utilities import load_object, intTable, plotGenesInTerm, getAnnGenes, run_ora_catchErrors
Set R environment with rpy2:
Code
import rpy2.rinterface_lib.callbacks
import anndata2ri
import logging
from rpy2.robjects import pandas2ri
import rpy2.robjects as ro
sc.settings.verbosity = 0
rpy2.rinterface_lib.callbacks.logger.setLevel(logging.ERROR)
pandas2ri.activate()
anndata2ri.activate()
% load_ext rpy2.ipython
Set up of graphical parameters for Python plots:
Code
% matplotlib inline
sc.set_figure_params(dpi = 300 , fontsize = 20 )
plt.rcParams['svg.fonttype' ] = 'none'
cmap_up = sns.light_palette("red" , as_cmap= True )
cmap_down = sns.light_palette("blue" , as_cmap= True )
cmap_all = sns.light_palette("seagreen" , as_cmap= True )
Set up of graphical parameters for R plots:
Code
default_units = 'in'
default_res = 300
default_width = 10
default_height = 9
import rpy2
old_setup_graphics = rpy2.ipython.rmagic.RMagics.setup_graphics
def new_setup_graphics(self , args):
if getattr (args, 'units' ) is not None :
if args.units != default_units:
return old_setup_graphics(self , args)
args.units = default_units
if getattr (args, 'res' ) is None :
args.res = default_res
if getattr (args, 'width' ) is None :
args.width = default_width
if getattr (args, 'height' ) is None :
args.height = default_height
return old_setup_graphics(self , args)
rpy2.ipython.rmagic.RMagics.setup_graphics = new_setup_graphics
Here the cell were we inject the parameters using Quarto renderer:
Code
# Injected Parameters
N = 3
Code
# Injected Parameters
N = 1
Import R libraries:
Code
%% R
source('./../../../../utilities_folder/GO_helper.r' )
loc <- './../../../../R_loc' # pointing to the renv environment
.libPaths(loc)
library('topGO' )
library('org.Hs.eg.db' )
library(dplyr)
library(ggplot2)
Set output folders:
Code
output_folder = './'
folder = './tables/cluster_' + str (N) + '/'
Load data
Here we load the dataframe:
Code
markers = pd.read_excel(folder + 'genes_in_cluster_' + str (N) + '.xlsx' , index_col = 0 )
markers
logFC.celltypes_leveledhEGCLC
logFC.celltypes_leveledhPGCLC
logFC.celltypes_levelediMeLC
logCPM
LR
PValue
FDR
clusters
LEFTY2
-0.164549
-13.102299
5.129127
6.877080
2605.599912
0.000000e+00
0.000000e+00
1
DUSP6
-0.162995
-17.348844
-3.828340
8.037927
1715.506362
0.000000e+00
0.000000e+00
1
BCAT1
0.109150
-17.145079
-0.449204
8.162173
1502.743188
0.000000e+00
0.000000e+00
1
LEFTY1
-0.103295
-14.802340
2.704207
6.768755
1557.414910
0.000000e+00
0.000000e+00
1
USP44
-0.040316
-16.732222
-0.367341
7.687626
1426.403343
5.493069e-309
5.360431e-307
1
...
...
...
...
...
...
...
...
...
HBEGF
-0.068086
-11.146751
-0.180864
2.381645
130.899427
3.461307e-28
1.323966e-27
1
DOK1
-0.420011
-11.218755
0.065643
2.343018
130.740075
3.746126e-28
1.431999e-27
1
FBN1
0.246173
-10.838374
0.252711
2.314016
126.901356
2.516382e-27
9.507123e-27
1
RNF152
0.028054
-10.793439
0.063827
2.134606
115.113859
8.701053e-25
3.163852e-24
1
ZNF441
-0.251103
-10.693976
0.329598
1.971160
108.657170
2.134557e-23
7.616255e-23
1
505 rows × 8 columns
Code
allGenes_series = pd.read_csv('./tables/all_bkg_genes.csv' )
allGenes = allGenes_series['0' ].tolist()
Here we load the dictionary that associates to each GO term its genes:
Code
GO2gene = load_object('./../../../../data/GO2gene_complete.pickle' )
Markers of cluster
We filter genes for the cluster under investigation based on the p-value adjusted that we then convert in -log(p-value adjusted):
Code
markers = markers[markers.FDR < 0.01 ]
markers['-log10(FDR)' ] = - np.log10(markers.FDR)
markers = markers.replace(np.inf, markers[markers['-log10(FDR)' ] != np.inf]['-log10(FDR)' ].max ())
markers
logFC.celltypes_leveledhEGCLC
logFC.celltypes_leveledhPGCLC
logFC.celltypes_levelediMeLC
logCPM
LR
PValue
FDR
clusters
-log10(FDR)
LEFTY2
-0.164549
-13.102299
5.129127
6.877080
2605.599912
0.000000e+00
0.000000e+00
1
306.270800
DUSP6
-0.162995
-17.348844
-3.828340
8.037927
1715.506362
0.000000e+00
0.000000e+00
1
306.270800
BCAT1
0.109150
-17.145079
-0.449204
8.162173
1502.743188
0.000000e+00
0.000000e+00
1
306.270800
LEFTY1
-0.103295
-14.802340
2.704207
6.768755
1557.414910
0.000000e+00
0.000000e+00
1
306.270800
USP44
-0.040316
-16.732222
-0.367341
7.687626
1426.403343
5.493069e-309
5.360431e-307
1
306.270800
...
...
...
...
...
...
...
...
...
...
HBEGF
-0.068086
-11.146751
-0.180864
2.381645
130.899427
3.461307e-28
1.323966e-27
1
26.878123
DOK1
-0.420011
-11.218755
0.065643
2.343018
130.740075
3.746126e-28
1.431999e-27
1
26.844057
FBN1
0.246173
-10.838374
0.252711
2.314016
126.901356
2.516382e-27
9.507123e-27
1
26.021951
RNF152
0.028054
-10.793439
0.063827
2.134606
115.113859
8.701053e-25
3.163852e-24
1
23.499784
ZNF441
-0.251103
-10.693976
0.329598
1.971160
108.657170
2.134557e-23
7.616255e-23
1
22.118259
505 rows × 9 columns
All regulated
Code
all_sign = markers.index.tolist()
allSelected = allGenes_series['0' ].isin(all_sign).astype('int' ).tolist()
topGO
All significant
Code
%% R - i allSelected - i allGenes
allGenes_v <- c(allSelected)
#print(allGenes_v)
names(allGenes_v) <- allGenes
allGenes_v <- unlist(allGenes_v)
geneNames <- c(allGenes)
ann_org_BP <- topGO::annFUN.org(whichOnto= 'BP' , feasibleGenes= names(allGenes_v),
mapping= 'org.Hs.eg' , ID= 'symbol' )
ann_org_MF <- topGO::annFUN.org(whichOnto= 'MF' , feasibleGenes= names(allGenes_v),
mapping= 'org.Hs.eg' , ID= 'symbol' )
ann_org_CC <- topGO::annFUN.org(whichOnto= 'CC' , feasibleGenes= names(allGenes_v),
mapping= 'org.Hs.eg' , ID= 'symbol' )
selection <- function(allScores){return (as .logical(allScores))}
Code
%% R
#print(lapply(ann_org_BP, count_genes))
GOdata <- new("topGOdata" ,
ontology= "BP" ,
allGenes= allGenes_v,
annot= annFUN.GO2genes,
GO2genes= ann_org_BP,
geneSel = selection,
nodeSize= 10 )
Code
%% R - o results
results <- runTest(GOdata, algorithm= "weight01" ,statistic= "fisher" )
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata
genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([10903, 437, 10, 4097], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight= results,
orderBy= "weight" , topNodes= len (scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores' : scores_py, 'GO.ID' : score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID' , right_on = 'GO.ID' )
results_table_py
GO.ID
Term
Annotated
Significant
Expected
weight
Scores
0
GO:0007614
short-term memory
11
5
0.44
3.8e-05
0.000038
1
GO:0007165
signal transduction
3516
192
140.92
5.3e-05
0.000053
2
GO:0001662
behavioral fear response
20
6
0.80
9.6e-05
0.000096
3
GO:0015833
peptide transport
155
10
6.21
0.00025
0.000247
4
GO:0070848
response to growth factor
507
33
20.32
0.00025
0.000251
...
...
...
...
...
...
...
...
5697
GO:2001224
positive regulation of neuron migration
15
0
0.60
1.00000
1.000000
5698
GO:2001241
positive regulation of extrinsic apoptot...
10
0
0.40
1.00000
1.000000
5699
GO:2001252
positive regulation of chromosome organi...
93
0
3.73
1.00000
1.000000
5700
GO:2001256
regulation of store-operated calcium ent...
11
0
0.44
1.00000
1.000000
5701
GO:2001267
regulation of cysteine-type endopeptidas...
13
0
0.52
1.00000
1.000000
5702 rows × 7 columns
Code
results_table_py = results_table_py[results_table_py['Scores' ] < 0.05 ]
results_table_py = results_table_py[results_table_py['Annotated' ] < 200 ]
results_table_py = results_table_py[results_table_py['Annotated' ] > 15 ]
Code
results_table_py['-log10(pvalue)' ] = - np.log10(results_table_py.Scores)
results_table_py['Significant/Annotated' ] = results_table_py['Significant' ] / results_table_py['Annotated' ]
Code
intTable(results_table_py, folder = folder, fileName = 'GO_BP_all.xlsx' , save = True )
Code
%% R - i folder
Res <- GenTable(GOdata, weight= results,
orderBy= "weight" , topNodes= length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID" , "Term" , "Annotated" , "Significant" , "Expected" , "Statistics" )
Res$ER <- Res$Significant / Res$Expected
image = bubbleplot(Res, Ont = 'BP' , fillCol = 'forestgreen' )
ggsave(file = paste0(folder, "TopGO_results_BP.pdf" ), plot= image, width= 12 , height= 4 )
bubbleplot(Res, Ont = 'BP' , fillCol = 'forestgreen' )
Code
%% R - i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 15 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
ggsave(file = paste0(folder, "Genes_in_Term_results_BP.pdf" ), plot= image, width= 12 , height= 4 )
plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 15 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
Code
%% R - i markers - i folder
saveGenesInTerm(Res, GOdata, nterms = 20 , path = paste0(folder,'GO_BP_genesInTerm_all.xlsx' ), SE = markers)
Code
%% R
GOdata <- new("topGOdata" ,
ontology= "MF" ,
allGenes= allGenes_v,
annot= annFUN.GO2genes,
GO2genes= ann_org_MF,
geneSel = selection,
nodeSize= 10 )
Code
%% R - o results
results <- runTest(GOdata, algorithm= "weight01" ,statistic= "fisher" )
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata
genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([11203, 460, 10, 660], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight= results,
orderBy= "weight" , topNodes= len (scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores' : scores_py, 'GO.ID' : score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID' , right_on = 'GO.ID' )
results_table_py = results_table_py[results_table_py['Scores' ] < 0.05 ]
results_table_py = results_table_py[results_table_py['Annotated' ] < 200 ]
results_table_py = results_table_py[results_table_py['Annotated' ] > 15 ]
intTable(results_table_py, folder = folder, fileName = 'GO_MF_all.xlsx' , save = True )
Code
%% R
Res <- GenTable(GOdata, weight= results,
orderBy= "weight" , topNodes= length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID" , "Term" , "Annotated" , "Significant" , "Expected" , "Statistics" )
Res$ER <- Res$Significant / Res$Expected
image = bubbleplot(Res, Ont = 'MF' , fillCol = 'forestgreen' )
ggsave(file = paste0(folder, "TopGO_results_MF.pdf" ), plot= image, width= 12 , height= 4 )
bubbleplot(Res, Ont = 'MF' , fillCol = 'forestgreen' )
Code
%% R - i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 15 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
ggsave(file = paste0(folder, "Genes_in_Term_results_MF.pdf" ), plot= image, width= 12 , height= 4 )
plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 15 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
Code
%% R - i markers - i folder
saveGenesInTerm(Res, GOdata, nterms = 20 , path = paste0(folder,'GO_MF_genesInTerm_all.xlsx' ), SE = markers)
Code
%% R
GOdata <- new("topGOdata" ,
ontology= "CC" ,
allGenes= allGenes_v,
annot= annFUN.GO2genes,
GO2genes= ann_org_CC,
geneSel = selection,
nodeSize= 10 )
Code
%% R - o results
results <- runTest(GOdata, algorithm= "weight01" ,statistic= "fisher" )
Code
scores = ro.r.score(results)
score_names = ro.r(
'''
names(results@score)
'''
)
go_data = ro.r.GOdata
genesData = ro.r(
'''
geneData(results)
'''
)
genesData
array([11323, 469, 10, 465], dtype=int32)
Code
#num_summarize = min(100, len(score_names))
results_table = ro.r.GenTable(go_data, weight= results,
orderBy= "weight" , topNodes= len (scores))
Code
results_table_py = ro.conversion.rpy2py(results_table)
Code
scores_py = ro.conversion.rpy2py(scores)
score_names = [i for i in score_names]
Code
scores_df = pd.DataFrame({'Scores' : scores_py, 'GO.ID' : score_names})
results_table_py = results_table_py.merge(scores_df, left_on = 'GO.ID' , right_on = 'GO.ID' )
Code
results_table_py = results_table_py[results_table_py['Scores' ] < 0.05 ]
results_table_py = results_table_py[results_table_py['Annotated' ] < 200 ]
results_table_py = results_table_py[results_table_py['Annotated' ] > 15 ]
intTable(results_table_py, folder = folder, fileName = 'GO_CC_all.xlsx' , save = True )
Code
%% R
Res <- GenTable(GOdata, weight= results,
orderBy= "weight" , topNodes= length(score(results)))
#print(Res[0:10,])
colnames(Res) <- c("GO.ID" , "Term" , "Annotated" , "Significant" , "Expected" , "Statistics" )
Res$ER <- Res$Significant / Res$Expected
image = bubbleplot(Res, Ont = 'CC' , fillCol = 'forestgreen' )
ggsave(file = paste0(folder, "TopGO_results_CC.pdf" ), plot= image, width= 12 , height= 4 )
bubbleplot(Res, Ont = 'CC' , fillCol = 'forestgreen' )
Code
%% R - i markers
image = plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 12 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
ggsave(file = paste0(folder, "Genes:_in_Term_results_CC.pdf" ), plot= image, width= 12 , height= 4 )
plotGenesInTerm_v1(Res, GOdata, SE = markers, nterms= 12 , ngenes= 12 ,
fillCol= 'forestgreen' , log = TRUE)
Code
%% R - i markers - i folder
saveGenesInTerm(Res, GOdata, nterms = 20 , path = paste0(folder,'GO_CC_genesInTerm_all.xlsx' ), SE = markers)
Reactome
Code
curated = msigdb[msigdb['collection' ].isin(['reactome_pathways' ])]
curated = curated[~ curated.duplicated(['geneset' , 'genesymbol' ])]
aggregated = curated[["geneset" , "genesymbol" ]].groupby("geneset" ).count().rename(columns= {"genesymbol" : "gene_count" })
curated = curated[~ curated.geneset.isin(aggregated[aggregated.gene_count > 200 ].index.tolist())].copy()
curated = curated[~ curated.geneset.isin(aggregated[aggregated.gene_count < 15 ].index.tolist())].copy()
Code
rank = pd.DataFrame(markers['-log10(FDR)' ])
rank_copy = rank.copy()
rank_copy['pval' ] = markers.loc[rank.index].FDR
Code
-log10(FDR)
pval
LEFTY2
306.270800
0.000000e+00
DUSP6
306.270800
0.000000e+00
BCAT1
306.270800
0.000000e+00
LEFTY1
306.270800
0.000000e+00
USP44
306.270800
5.360431e-307
...
...
...
HBEGF
26.878123
1.323966e-27
DOK1
26.844057
1.431999e-27
FBN1
26.021951
9.507123e-27
RNF152
23.499784
3.163852e-24
ZNF441
22.118259
7.616255e-23
505 rows × 2 columns
Code
results_table_py = run_ora_catchErrors(mat= rank.T, net= curated, source= 'geneset' , target= 'genesymbol' , verbose= False , n_up= len (rank), n_bottom= 0 )
len (results_table_py)
Code
intTable(results_table_py, folder = folder, fileName = 'Reactome_all.xlsx' , save = True )
Code
if len (results_table_py) > 0 :
results_table_py = getAnnGenes(results_table_py, GO2gene['reactome_pathways' ], rank_copy)
_, df = plotGenesInTerm(results = results_table_py, GO2gene = GO2gene['reactome_pathways' ], DEGs = rank_copy, n_top_terms = 10 , cmap = cmap_all)
Code
if len (results_table_py) > 0 :
intTable(df, folder = folder, fileName = 'genesInTerm_Reactome_all.xlsx' , save = True )
KEGG
Code
curated = msigdb[msigdb['collection' ].isin(['kegg_pathways' ])]
curated = curated[~ curated.duplicated(['geneset' , 'genesymbol' ])]
aggregated = curated[["geneset" , "genesymbol" ]].groupby("geneset" ).count().rename(columns= {"genesymbol" : "gene_count" })
curated = curated[~ curated.geneset.isin(aggregated[aggregated.gene_count > 200 ].index.tolist())].copy()
curated = curated[~ curated.geneset.isin(aggregated[aggregated.gene_count < 15 ].index.tolist())].copy()
Code
results_table_py = run_ora_catchErrors(mat= rank.T, net= curated, source= 'geneset' , target= 'genesymbol' , verbose= False , n_up= len (rank), n_bottom= 0 )
Code
intTable(results_table_py, folder = folder, fileName = 'KEGG_all.xlsx' , save = True )
Code
if len (results_table_py) > 0 :
results_table_py = getAnnGenes(results_table_py, GO2gene['kegg_pathways' ], rank_copy)
_, df = plotGenesInTerm(results_table_py, GO2gene['kegg_pathways' ], rank_copy, n_top_terms = 10 , n_top_genes = 15 , cmap = cmap_all)
Code
if len (results_table_py) > 0 :
intTable(df, folder = folder, fileName = 'genesInTerm_KEGG_all.xlsx' , save = True )